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We investigate numerically the scaling properties of spatiotemporal correlation functions in the one-
dimensional Burgers equation driven by noise with variance proportional toukub. The long-distance behavior at
b,0 is determined by shocks that lead to multifractality in the high-order structure functions and a dynamical
exponentz close to unity. Forb.0 earlier theoretical predictions for scaling exponents constrained by
Galilean invariance obtain; these results are not expected to hold forb,0. Nevertheless, the continuation of
the fixed point tob,0 correctly predicts some of the properties, an occurrence that we relate to the anomalous
scaling of composite operators.@S1063-651X~96!05811-4#

PACS number~s!: 05.45.1b, 47.10.1g

The Burgers equation@1# for a one-dimensional velocity
field u(x,t) has served as a simple model for investigating a
variety of interesting issues that arise in fluid turbulence.
Recently, there has been renewed interest in the Burgers
equation with stochastic noise@2–5#
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Heren denotes the viscosity. The stochastic noiseh(x,t) is
spatially correlated but has no temporal correlations. The
spatial Fourier transform of the noiseĥ(k,t) obeys

^ĥ~k,t !ĥ~k8,t8!&52Dukub~2p!d~k1k8!d~ t2t8!. ~2!

In two stimulating papers Cheklov and Yakhot@2,3# have
explored the special case ofb521. We consider the system
for positive and negative values ofb and study how the
spatiotemporal behavior in the inertial range varies. We dis-
cuss how the occurrence of shocks modifies long-distance,
long-time properties forb,0 and leads to multifractality in
contrast to the regimeb.0. Nevertheless, as we will de-
scribe, results from a renormalization-group~RG! analysis of
the model valid forb.0, where there are no shocks, con-
tinue to describe some of the properties forb,0. These
observations can be understood in terms of the shocks them-
selves, which lead to a dynamical scaling exponentz'1 and
to the anomalous scaling behavior of composite operators.
Our specific numerical results include the long-wavelength
behavior of ~i! the energy spectrumE(k)5^û(k)û(2k)&,
whereû(k) is the spatial Fourier transform ofu(x); ~ii ! the
correlation function of the energy dissipation rate
e(x,t)5n(]u/]x)2; and ~iii ! the structure functionsSq(r )
moments of velocity differences

Sq~r ![^u@u~x1r !2u~x!#uq& ~3!

for different values ofq>2. One expectsSq(r );r zq for r in
the inertial range, delineated by the dissipation length scale
set by the shock size and the distance between the shocks. Of
particular interest is the dependence ofzq on q and its de-
viation from linearityzqÞcq, which is referred to as inter-
mittency and as displaying multifractal behavior. We study
the dynamical behavior and findz'1 for b,0; we identify

a ~subdominant! exponent that we relate to the results of the
RG analysis. Finally, we present results for the scaling of
composite operators~local products of the fields! for b,0.

The one-dimensional noiseless Burgers equation displays
shocks and scale-invariant behavior in the inertial range@1#:
the energy spectrumE(k) decays algebraically, i.e.,
E(k);k22, and the structure functionsSq(r ) grow linearly
with r for all q>2. In the presence of uncorrelated, conserv-
ing noise withb52 shocks disappear; the energy spectrum
tends to a constant for smallk andSq(r );r zq with zq5q.
These results correspond to those obtained for the Kardar-
Parisi-Zhang ~KPZ! equation @6,7# for interface growth,
which is related to the noisy Burgers equation by a simple
transformation@8#. The interface version of the problem was
investigated by Medinaet al. @9# using RG techniques for
0<b<2. They studied fixed points to one-loop order and
obtained the exponentx characterizing the interface width
and the dynamical exponentz exactly. We note that the case
of b521 studied in Ref.@2# falls outside the scope of the
analysis in Ref.@9#, since for negativeb a naive calculation
reveals that higher-order nonlinear terms become relevant in
the renormalization-group sense.

Here we study the stochastic Burgers equation numeri-
cally for 21<b<2 using a pseudospectral method@10#,
typically with 4096 points in a system of sizeL51024 and
occasionally with larger sizes. We chose the noise from a
uniform distribution with the appropriate variance and the
initial state to be either a single sine wave or a random su-
perposition of sinusoids. We used the parametersn50.1 or
smaller ~down to n50.03) and a noise intensityD, in the
discrete version of Eq.~1!, of D51026.

For positiveb we find good agreement with the theoreti-
cal results of Medinaet al. in Ref. @9#. Namely, forb be-
tween 1.5 and 2, the system flows to the standard KPZ fixed
point @11# with interface exponentsz5 3

2 andx5 1
2 @6,7#. We

define the exponents that characterizes the behavior of the
energy spectrum:

E~k!}uku2s. ~4!

At b51.6 we find that@12# E(k) tends to a constant consis-
tent with the results for the KPZ fixed points52x2150
crossing over from the bare free-field behavior of
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E(k);k20.4. The measured dynamical exponent is in good
agreement with the KPZ value and the velocity structure
functions approach a constant value for larger as expected
@12#.

For 0,b,1.5, Ref.@9# finds a new fixed point with ex-
ponents given by@13#

s512 2
3b, z511 1

3 b. ~5!

Both this new ~strong-coupling! fixed point and the KPZ
fixed point are Galilean invariant and this leads to the expo-
nent relationx1z52 @9#. There exist several numerical
simulations@7# in the interface representation for the case
b>1; the numerical results forb.1 do not all agree@14#;
for b,1 a ballistic deposition model studied by Meakin and
Jullien @15# does not in fact yieldx1z52, but the authors
point out possible difficulties with crossover in the determi-
nation ofz.

In Fig. 1 we show the behavior ofE(k) versusk for
b50.5. At high k, i.e., small distances, one finds the bare
free-field behaviorE(k);k21.5. This behavior crosses over
at smallerk to E(k);k22/3, in agreement with the value of
s given in Eq. ~5!. We find similar agreement forb51.
Thus there is clear indication that one is at a new fixed point
for 0,b,1.5. We find that the velocity structure functions
Sq(r ) approach a constant valueAq at larger and their ratios
are consistent with the results of a Gaussian distribution. The
conclusion is that the long-wavelength behavior is deter-
mined by the strong-coupling fixed point for positiveb and
there is no remnant of shocklike behavior; the velocity pro-
file shows no shocks and this is confirmed by the lack of any
indication of intermittency in$Sq%. We emphasize that the
noise variance behaves asukub for all k; no cutoff has been
introduced@4,12#. From a direct calculation of the velocity
correlation functionC(t)^u(x,t)u(x,0)&;t2(12s)/z we find
z'1.2, which means that the relationx1z52 is obeyed
within numerical errors. However, in the interface represen-
tation, from the temporal correlations in the steady state, we
find a value forz much larger than the theoretical value,
which leads to a violation of the identityx1z52 by as
much as 20%, in rough agreement with the results of Ref.
@15#.

We next discuss the regimeb,0. A visual inspection of
the profile reveals a few large, well-defined shocks. As men-
tioned earlier, negative values ofb lie outside the realm of a
RG analysis of the interface model because of higher-order
nonlinear terms. Nevertheless, we find that atb520.5 and
21, E(k);k21.3460.04 ~see Fig. 2! and E(k);k21.6560.05,
respectively, in agreement with~4! and ~5!. The result at
b521 is the one reported in Ref.@2# with a hyperviscosity
term with a 12th derivative in Eq.~1!. Reference@2# found
clear evidence fors5 5

3 and provided somewhat less persua-
sive evidence thatz5 2

3.
The agreement of the exponents with that predicted from

a naive extrapolation of the results in Ref.@9# is surprising; it
appears that the continuation of the non-KPZ fixed point to
negative values of b determines the behavior of
^u(k)u(2k)& and higher-order nonlinearities are not rel-
evant ~see the later discussion!. Indeed, we have explicitly
checked that atb521 the addition of a small nonlinearity
of the form u3(]u/]x) does not change the value of the
exponents. As to the velocity structure functions, it was
already pointed out in Ref.@2# that at b521 they grow
almost linearly, zq'0.9, with distance forq54,6,8. At
b520.5 also, the profile clearly indicates the presence of
the shocks. With the noise of the form assumed and within
our numerical limitations,zq'0.87 for q56 and 8 and
somewhat lower forq54 ~see Fig. 3!. In order to clarify this
strongly intermittent behavior we studied a cutoff noise that
further suppresses the stochastic driving at short length
scales. We employed a noise that has correlations of the form
ukub for smallk and assumes a small constant value for larger
k ~equal to the smallest value obtained in the original model!
with smooth interpolation between the two limits. The
shocks are better defined and for bothb521 and20.5 we
find a value ofzq50.9860.04 forq54, 6, and 8. The value
of s remains unaltered. This clearly establishes the role of
shocks in causing strong intermittency.

Since we expect most of the dissipation to occur in the
shocks a useful probe of the system is the spatial correlation
of the rate of energy dissipatione(x) defined by
e5n(]u/]x)2. We compute its correlation

Gd~r !5^e~x!e~x1r !& ~6!

FIG. 1. Energy spectrumE(k) vs k on a log-log plot for
b50.5. Heren50.05 andD51026. The system size isL51024.
At large k the behavior is that of the free field and at lowk is in
agreement with the result derived from the non-KPZ fixed point.
See Eq.~5!.

FIG. 2. Energy spectrumE(k) vs k on a log-log plot for a
system of size L51024 for b520.5. Here n50.04 and
D51026. The behavior at smallk is in agreement with the result
extrapolated from the non-KPZ fixed point:E(k)}uku2s with
s512

2
3b5

4
3.
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and determine the exponentm defined by its larger behav-
ior: Gd(r );ur u2m. We computed the spatial Fourier trans-
form Ĝd(k)5^ê(k) ê(2k)& directly; the data obtained from
our calculations are displayed in Fig. 4. Forb521 we find
m'0.3860.08 compared to the value of 0.25 obtained in the
presence of hyperviscosity@2#. At b520.5, the value ofm
changes somewhat to 0.4560.06 @16#. Note that forb.0,
Gd(r ) is short ranged and does not show scaling behavior.

We next consider dynamical correlations and determine
the dynamical exponentz for b.0. We evaluate the auto-
structure functions defined bySq(r50,t)5^@u(x,t)
2u(x,0)]q&, which are expected to scale asSq(0,t);tzq /z.
We see from Fig. 5 that there are two scaling regimes and
z can be deduced from the values ofzq determined earlier.
Our findings may be summarized by the statement that at
short times the behavior ofS2(0,t) is consistent with
z511b/3, while z51 at longer times. The valuez51 is
due to the presence and ballistic motion of shocks; the latter
leads to linear behavior in time similar to that in space. This
is reminiscent of Taylor’s frozen hypothesis in that the time
correlations at a given point are similar to equal time spatial
correlations with a spatial separation determined by the mean
velocity of shocks. The value ofz51 would imply that the

exponent identityz1x52 imposed by Galilean invariance
at the strong-coupling fixed point is violated; however, the
Galilean invariant fixed point does describe the behavior of
the system: it correctly predicts the exponents that charac-
terizesE(k); it also predicts the dynamical exponent except
when the effective exponent ofz51 due to the motion of
shocks simply dominates the lower fixed-point value.

Finally, we draw attention to the anomalous scaling be-
havior of the composite operatorŝu2(x)u2(y)& and

^u4(x)u4(y)&. We calculatê un̂(k)un̂(2k)&, whereun̂(k) is
the Fourier transform ofun(x) for n52 and 4. The results
are plotted in Fig. 6. We find numerically that

^un̂(k)un̂(2k)&}k2sn at b521 with sn'1.6 for both
n52 and 4@16#. This behavior does not obey, within the
limitations of our numerical calculations, expectations based
on so-called gap scaling and is consistent with the occur-
rence of multifractality. The ultraviolet behavior determined
by the existence of shocks alters the scaling of composite
operators and the precise behavior can be related quantita-
tively to the valuez51. Our results strongly suggest that the
higher-order operators are not increasingly relevant. This be-
havior underlies the success of the prediction for the expo-
nents512 2

3b based on a simple balancing argument ignor-

FIG. 3. Structure factorsSq(r ) vs r plotted on a log-log plot for
q54, 6, and 8 whenb520.5. The system size isL51024 and
distances are measured in lattice units. For distances in the inertial
range, the growth ofSq(r ) is close to linear. Heren50.03 and
D51026.

FIG. 4. Fourier transform of the correlations of the energy dis-
sipatione5n(]u/]x)2 @see Eq.~6!#, Gd(k) vs k on a log-log plot
for b520.5 and n50.04 ~upper curve! and b521 and
n50.075~lower curve!. HereD51026 in both cases.

FIG. 5. Autostructure function Sq(r50,t)5^@u(x,t)
2u(x,0)]q& vs t plotted on a log-log plot forq52 ~lower curve!
andq54 ~upper curve! whenb521. From the long-time behavior
the value of the dynamical scaling exponentz can be estimated to
be z'1.

FIG. 6. Correlations of composite operators^un̂(k)un̂(2k)&
plotted on a log-log plot forn52 ~lower curve! andn54 ~upper
curve! for b521. Heren50.075 andD51026.
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ing higher-order terms@13#, which is also the value obtained
by a continuation to negativeb of the exponent computed by
Medinaet al. for b.0. Note that the naive arguments apply
for correlations involving twou’s at widely separated points
but fail in the ~singular! limit when separations are taken to
be zero. Recently, Polyakov@5# has analyzed the stochastic
Burgers equation using point-splitting methods and the op-
erator product expansion; however, his results do not appear
to be directly applicable to theb,0 case studied here. In
conclusion, we have described a variety of intriguing behav-

ior that occurs in the Burgers equation with strongly~spa-
tially! correlated stochastic noise: the existence of shocks
and the consequent occurrence of multifractality and the
scaling of composite operators and dynamical correlations.
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